National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Fine-Grained Vehicle Recognition from Traffic Surveillance Camera
Mencner, Pavel ; Špaňhel, Jakub (referee) ; Sochor, Jakub (advisor)
The aim of this thesis is image based detection of vehicles from traffic surveillance camera and fine-grained vehicle type recognition (manufacturer and model). In the thesis the Unpack normalization method is implemented which transforms the vehicle image into its apparent flat representation in order to increase the classifier's success rate. The Unpack method make use of 3D bounding box of the vehicle. This bounding box is constructed during test period using the information of vehicle contour and direction toward vanishing points. The thesis involve accuracy comparison between direct and Unpack classification methods. The proposed solution is based on several related parts that benefit from convolutional neural networks. These parts are: vehicle detection from image data, estimation of the directions towards vanishing points solved as classification task, vehicle contour detection using convolutional Encoder-Decoder network and fine-grained vehicle type classification. Using Unpack based classification the 2% accuracy improvement against direct classification has been achieved, resulting in 86% overall success rate. The outcome of this thesis is fine-grained vehicle classification system that works with traffic surveillance video without any viewpoint limitations.
Fine-Grained Vehicle Recognition from Traffic Surveillance Camera
Mencner, Pavel ; Špaňhel, Jakub (referee) ; Sochor, Jakub (advisor)
The aim of this thesis is image based detection of vehicles from traffic surveillance camera and fine-grained vehicle type recognition (manufacturer and model). In the thesis the Unpack normalization method is implemented which transforms the vehicle image into its apparent flat representation in order to increase the classifier's success rate. The Unpack method make use of 3D bounding box of the vehicle. This bounding box is constructed during test period using the information of vehicle contour and direction toward vanishing points. The thesis involve accuracy comparison between direct and Unpack classification methods. The proposed solution is based on several related parts that benefit from convolutional neural networks. These parts are: vehicle detection from image data, estimation of the directions towards vanishing points solved as classification task, vehicle contour detection using convolutional Encoder-Decoder network and fine-grained vehicle type classification. Using Unpack based classification the 2% accuracy improvement against direct classification has been achieved, resulting in 86% overall success rate. The outcome of this thesis is fine-grained vehicle classification system that works with traffic surveillance video without any viewpoint limitations.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.